
NNSmith: Generating Diverse and Valid Test Cases for Deep Learning Compilers
Jiawei Liu ? Jinkun Lin ? Fabian Ruffy Cheng Tan Jinyang Li Aurojit Panda Lingming Zhang

Univiersity of Illinois Urbana-Champaign New York University Northeastern University ?Co-primary

TL;DR NNSmith is a fuzzer that automatically generates well-
formed models and their inputs for validating DL compilation

Introduction

1. Compilation technologies are increasingly used to optimize DL computation
2. The complex multi-layer compiler stack imposes challenges for correctness
3. Up-to 42% of the codebase are manually-written testing code

Can we test Deep-Learning compilers automatically?

Test oracle: (i) M can be compiled and
executed; and (ii) M(X ; W) = Ō

Well-formedness requires (i) construction
& “connection” of operators in M to be valid;
and (ii) computation of M(X ; W) to not involve NaNs and ∞
Why well-formedness? An invalid model, i.e., violating (i), oftentimes leads the
parser to reject the model, leaving other important components untested. While
computing operators over NaNs/∞, violating (ii), can lead to false positives (e.g.,
cast<int>(NaN) is UB) and negatives (i.e., models always output NaNs/∞)

Overview. NNSmith finds bugs in DL compilation with following steps:

1. Generation validity: To generate valid M , for each operator we program a
specification of input constraints and tensor type (shape & dtype) propagation

2. Model diversity: We construct M by incrementally inserting a randomly
selected operator if its input constraints are satisfiable

3. Numerical validity: X ; W is “learnt” by doing gradient descent for a
NaN/∞-inducing operator φ, i.e., we penalize out-of-domain input values by
defining and minimizing loss functions of φ.

4. Diff. testing: a bug is reported if M fails to compile/run or M(X ; W) 6= Ō

Approach

Operator Specification
We create valid M by incrementally adding an operator to an already-valid M , while
preserving the validity. We formalize the validity essentials in the specification below.
Input constraints of an operator
can be described by its attributes
and input shape dimensions (i.e.,
symbolic integers). We use the
requires method for making such
constraints, by solving which a valid
operator can be constructed from
the solver-provided assignments.
Type propagation. How to
know itensors (i.e., input
shapes & dtypes) in requires?
type_transfer is such a method
to propagate the output tensor types, over these symbolic integers.

Model Construction
Starting from a placeholder, each time a random operator φ is symbolically
constructed and inserted one of the two directions: (i) forward: as a consumer,
φ takes existing tensors as inputs; and (ii) backward: as a producer, existing
placeholders are replaced by φ, which grows new placeholders as inputs.

Gradient-based Input Search
Vulnerable operators. What produces NaNs/∞? Running operators with
limited/unstable domain over out-of-domain inputs! e.g., log2(X) where X ≤ 0.
Such operators are regarded as vulnerable operators.
Gradient guidance. Once an operator φ produces NaNs/∞, we apply a loss
function L over the out-of-domain inputs and minimize the loss via gradient descent.
L is defined according to the inequalities of φ’s domain. For log2, the inequality
f (x) = −x ≤ 0 derives L = ∑

x∈X max(f (x), 0).
Proxy derivative. Some operators are non-differentiable or zero-derivative at
certain regions. Under such circumstances, we proceed the gradient descents by
applying constant derivatives whose sign complies with overall trend.

Result Highlights

Bug finding. NNSmith fuzzes the nightly builds of three DL compilers (and by
product the PyTorch exporter), finding 72 bugs, 51 (71%) of which have been fixed.

Around 24% are semantic bugs (others are crashing bugs)
Around 60% are transformation bugs (others are conversion bugs or unclassified)

Branch coverage. After four-hour fuzzing, NNSmith covers around 18-19%
system-wide branch coverage (more challenging than line cov.), outperforming the
2nd-best tester by 1.8×/1.08× over ORT/TVM. The improvement over ORT is
larger as it is more pattern-sensitive with more graph-level passes.

0 50 100 150 200 250
Time (Minute)

6

9

12

#
C

ov
er

ag
e

(1
00

0
br

an
ch

es
)

11579/64854 = 17.9%

NNSmith

GraphFuzzer

LEMON

(a) ONNXRuntime (ORT)

0 50 100 150 200 250
Time (Minute)

16

18

20

#
C

ov
er

ag
e

(1
00

0
br

an
ch

es
)

19161/102994 = 18.6%

(b) TVM

Validity rate of X ; W . Gradient guidance finds NaN/∞-free X ; W for 98%
model samples in 3.5ms (each; on CPU), improving random sampling by up-to 34%.
However, if we simply do default initialization, the validity rate will be only 30-48%.

0 5 10 15 20 25 30
Avg. Searching Time (millisecond)

0.6

0.7

0.8

0.9

1.0

S
uc

ce
ss

R
at

e

Searching Method

Gradient (Proxy Deriv.)

Gradient

Sampling

Model Size

10

20

30

Model Size

10

20

30

Try It Out

Our artifact and implementation are available on PyPI (nnsmith), GitHub (ise-
uiuc/nnsmith), and DockerHub (ganler/nnsmith-asplos23-ae).

@ https://github.com/ise-uiuc/nnsmith 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems – ASPLOS 2023 B jiawei6@illinois.edu

https://pypi.org/project/nnsmith/
https://github.com/ise-uiuc/nnsmith
https://github.com/ise-uiuc/nnsmith
https://hub.docker.com/r/ganler/nnsmith-asplos23-ae
https://github.com/ise-uiuc/nnsmith
mailto:jiawei6@illinois.edu

