
 Evaluating Language Models for Efficient Code Generation
Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, Yifeng Ding, Lingming Zhang

University of Illinois Urbana-Champaign Tongji University

Simple tasks hardly tell a difference…
Tasks like “add two numbers” are mostly solved in the same way
Brief computation brings higher runtime variation

 Contact: https://jw-liu.xyz/ GitHub: part of evalplus/evalplus

LLMs can generate code; but can they generate efficient code? How to evaluate that?
TL;DR: Evaluating code efficiency requires (i) perf-exercising coding tasks & (ii) meaningful compound metric

Differential Performance Evaluation

Simple tests hardly tell a difference…
 “All complexities are equal when N is small”
 Recursive Fib is no slower than iterative Fib with a small N

Average speedup can be confusing…
- Speedup is a commonly used compound metric for computing efficiency
- Speedup is intuitive for single subject: flash attn is Nx faster than vanilla attn
- For multiple tasks:
 Example: LLM A is 2x faster on 99 tasks, but LLM B is 100x faster on 1 task
 Avg speedup: Code by LLM B is on average ~1.5x faster than that for LLM A
 Inconsistent user experience: oftentimes code by LLM B is slower…
- Tasks with larger efficiency gaps can skew average speedup, making it biased

- Step 1: Generating sampling function “perf_input_gen”
 Input: Scale factor to control the computation load
 Expected Output: Test inputs of corresponding scale
- Step 2: Exponential input sampling
 Sample test inputs using scale= 2N starting with N = 1
 Increment N by 1 until hitting testing time budget

 Synthesizing a Synthesizer (SaS)

Selecting performance-exercising coding tasks:
- Sufficient computation: the test execution trace should be reasonably long
- Low variation: low coefficient of runtime variation to avoid flakiness in the task
- Performance diversity: solutions at different levels of efficiency can be sampled

 Performance-Exercising Task Selection

“Your submission can outperform 80% of LLM solutions”…
Relative winning ratio over massive samples of efficiency diversity.
- Measurement: #CPU instructions (also generalizable to others)
- Example: Given 10 reference samples in 4 clusters: [3, 2, 3, 2]
 If the code efficiency matches the 3rd cluster:
 Differential Performance Score (DPS) = (3 + 2 + 3) / 10 = 80%
 Normalized DPS = 3(rd cluster) / 4(clusters) =75%

 Differential Performance Score

1 1

2

2

3

3

Using 563 seed tasks in HumanEval+ and MBPP+, we create
EvalPerf, a collection of 121 perf-exercising tasks

- Fastest sample requires 10k+ instructions
- Each task has >= 4 reference clusters

EvalPerf

General instruction tuning boosts code efficiency
Prior code instruction tuners optimize code correctness, but also helps efficiency

Efficiency-encouraging prompts may not help
“Please provide an efficient …” and doing CoT does not necessarily help

Larger is not always better…
Within one model series, larger LLMs does not necessarily generate faster code

Model Study

Methodology Evaluation

More perf-exer tasks than EvalPlus by 4.8x
Under the same setting, SaS can get 121 perf-exercising
tasks from seed tasks, while EvalPlus test generator can
only get 25 perf-exercising tasks.

>10k instr. + Cluster>=4
EvalPlus 204 25

SaS (Ours) 271 121

<= 0.4% cross-platform coeff-variation
By repeating experiments over 4 different test beds, the
coefficient of variation is negligible: 0.1~0.4%.

https://jw-liu.xyz/
https://github.com/evalplus/evalplus

