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ABSTRACT
Estimating human pose is an important yet challenging task in
multimedia applications. Existing pose estimation libraries target
reproducing standard pose estimation algorithms. When it comes
to customising these algorithms for real-world applications, none
of the existing libraries can offer both the flexibility of developing
custom pose estimation algorithms and the high-performance of
executing these algorithms on commodity devices. In this paper, we
introduce HyperPose, a novel flexible and high-performance pose
estimation library. HyperPose provides expressive Python APIs
that enable developers to easily customise pose estimation algo-
rithms for their applications. It further provides a model inference
engine highly optimised for real-time pose estimation. This engine
can dynamically dispatch carefully designed pose estimation tasks
to CPUs and GPUs, thus automatically achieving high utilisation
of hardware resources irrespective of deployment environments.
Extensive evaluation results show that HyperPose can achieve
up to 3.1x∼7.3x higher pose estimation throughput compared to
state-of-the-art pose estimation libraries without compromising es-
timation accuracy. By 2021, HyperPose has received over 1000 stars
on GitHub and attracted users from both industry and academy.
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1 INTRODUCTION
Multimedia applications, such as interactive gaming, augmented re-
ality and self-driving cars, can greatly benefit from accurate and fast
human pose estimation. State-Of-The-Art (SOTA) pose estimation
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algorithms (e.g., OpenPose [1], PoseProposal [14], and PifPaf [10])
pre-process video streams, use neural networks to infer human
anatomical key points, and then estimate the human pose topology.

In practice, achieving both high accuracy and high-performance
in pose estimation is however difficult. On the one hand, achiev-
ing high-accuracy pose estimation requires users to deeply cus-
tomise standard pose estimation algorithms (e.g., OpenPose and
PifPaf), so that these algorithms can accurately reflect the char-
acteristics of user-specific deployment environments (e.g., object
size, illumination, number of humans), thus achieving high accu-
racy. On the other hand, deeply customised pose estimation algo-
rithms can contain various non-standard computational operators
in pre-processing and post-processing data, making such algorithms
difficult to always exhibit high performance in using commodity
embedded platforms (e.g., NVIDIA Jetson and Google TPU Edge)

When using existing pose estimation libraries to develop custom
applications, users often report several challenges. High-performance
C++-based libraries such as OpenPose [1] and AlphaPose [3] fo-
cus on specific pose estimation algorithms. They do not provide
intuitive APIs for users to customise pose estimation algorithms
based on the requirements of their specific deployment environ-
ments. These libraries are also optimised for certain hardware plat-
forms. When re-targeting them to new hardware platforms, users
must largely modify their internal execution runtime, which is non-
trivial for most pose estimation algorithm developers. Furthermore,
users could also use high-level pose estimation libraries such as
TF-Pose [8] and PyTorch-Pose [18]. These libraries offer users with
Python APIs to easily declare various pose estimation algorithms.
However, this easiness comes with a large performance overhead,
making these libraries incapable of handling real-world deployment
where high-resolution images are ingested at high speed [17].

In this paper, we introduce HyperPose, a flexible and fast library
for human pose estimation. The design and implementation of
HyperPose makes the following contributions:
(i) Flexible APIs for developing custompose estimation algo-
rithms. HyperPose provides flexible Python APIs for developing
custom pose estimation algorithms. These APIs consist of those
for customising the pipelines of pose estimation algorithms, the
architectures of deep neural networks, training datasets, training
hyper-parameters [11], data pre-processing pipelines, data post-
processing pipelines, and the strategy of paralleling neural network
training on GPUs.We show that, using these APIs, users can declare
a wide range of commonly used pose estimation algorithms while
customising these algorithms for high estimation accuracy.
(ii) High-performancemodel inference engine for executing
custom pose estimation algorithms. HyperPose can achieve
high-performance in executing custom pose estimation algorithms.
This is achieved through a novel high-performance algorithm execu-
tion engine. This engine is designed as a streaming dataflow [13].
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This dataflow can take custom computational operators for im-
plementing custom pose estimation logic. These operators can be
dynamically dispatched onto parallel CPUs and GPUs, thus keep-
ing computational resources always busy, irrespective of model
architectures and hardware platforms. The implementations of
these operators are also highly optimised, mainly by carefully lever-
aging the optimised computer-vision library: OpenCV, and the
high-performance model inference library: TensorRT.

We study both the API easiness and the performance of Hy-
perPose. The API study shows that HyperPose can provide better
flexibility via building and customising pose estimation algorithms.
The test-bed experiments further show that HyperPose can out-
perform the state-of-the-art optimised pose estimation framework:
OpenPose by to up to 3.1x in terms of the processing throughput
of high-resolution images.

2 DESIGN AND IMPLEMENTATION
In this section, we present the design principles and implementation
details of HyperPose.

2.1 Expressive Programming APIs
HyperPose aims to support different types of users in developing
pose estimation algorithms. There are users who would like to
find suitable algorithms and adapt them for their applications. To
support this, HyperPose allows users to customise the pipeline
of a typical pose estimation algorithm. Other users would like to
further modify the components in a pose estimation pipeline. For
example, they often need to control how a deep neural network is
being trained, and the data pre-processing/post-processing opera-
tors being used. To support them, HyperPose allow users to plug
in user-defined components in a pose estimation pipeline.

2.1.1 Algorithm development APIs. HyperPose provides a set of
high-level APIs 1 to relieve users from the burden of assembling
the complex pose estimation system. The APIs are in three mod-
ules, including Config, Model, and Dataset. Config exposures APIs
to configure the pose estimation system, while Model and Dataset
offer APIs to construct the concrete model, dataset, and the develop-
ment pipeline. With each API, users can configure the architecture
for different algorithms (e.g., OpenPose, PoseProposal), backbone
networks (e.g.,MobileNet [7] and ResNet[6]), and the training or
evaluation datasets (e.g., COCO and MPII). For the development
procedure, users can configure the hyper-parameters (e.g., learn-
ing rate and batch size), the distributed training via the KungFu
library [12] option (e.g., using a single or multiple GPUs), the train-
ing strategy (e.g., adopting pre-training and adaptation stage), and
the format of storing a trained model for further deployment(e.g.,
ONNX and TensorRT UFF). The rich configuration options enable
users to efficiently adapt the off-the-shelf models.

2.1.2 Algorithm customisation APIs. HyperPose users can flexi-
bly customise pose estimation algorithms to best fit in with their
specific usage scenarios. This is achieved by providing common
interfaces for key components in the algorithms. For example, to
implement custom neural networks, users could inherit from the

1https://hyperpose.readthedocs.io/en/latest/

Model class defined in HyperPose, and warping the custom compu-
tation logic into the corresponding member functions. As long as
use the self-defined model to replace the preset model options dur-
ing configuration, the custom model is enabled. The same practice
applies to enabling a custom dataset. These customised components
are then automatically integrated into the pose estimation system by
HyperPose. The Model module further exposures processing mod-
ules including preprocessor, postprocessor and visualizer,
which allow users to assemble their own development pipeline. By
doing this, HyperPose makes its APIs flexible to support extensive
customisation of its pose estimation algorithms.

2.2 High-performance Execution Engine
Designing a high-performance execution engine for human pose
estimation is challenging. A human pose estimation pipeline con-
sists of video stream ingesting, pre-processing (e.g., resizing and
data layout switching), GPU model inference, CPU post-processing,
and result exportation (e.g., visualisation).

These computation steps must be collaboratively completed us-
ing heterogeneous devices: CPUs, GPUs, and I/O devices (e.g., disk,
cameras, etc.). To achieve real-time inference, the engine must max-
imise the efficiency of using all these devices through parallelism.
We make two key designs in our inference engine:

2.2.1 Streaming pose estimation dataflow. We abstract the com-
putation steps shared by most pose estimation algorithms and im-
plement these steps as dataflow operators. The operators can be
asynchronously executed in a streaming dataflow. The topology
of the dataflow is implemented to be static for provisioning better
optimisation, thus maximising the processing throughput.

Figure 1 illustrates the dataflow implemented in HyperPose. The
source for the dataflow is often a video stream produced by a real-
time device (e.g., camera). The dataflow ingests the images into
a decoding operator (see 1 ). The decoded images are resized and
transformed to an expected data layout (e.g., channel-first) so that
they can be fed into a neural network (see 2 ). This neural network
is executed by an inference operator (see 3 ) on GPU. This operator
loads the checkpoint of a neural network trained by the HyperPose
Python platform or other supported libraries. The computed acti-
vation map from the neural network is given to a post-processing
operator for parsing human pose topology (see 4 ). The topology is
placed onto the original image at a visualisation operator (see 5 ).

Each operator pair shares a concurrent FIFO channel, manipu-
lated by CPU threads. The operators only block when there is no
incoming record and sleep until they are notified, thanks to the
condition variable mechanism. Benefiting from this, HyperPose can
ensure the pose estimation dataflow fully utilise parallel heteroge-
neous processors including CPUs and GPUs. Besides, HyperPose
fully masks I/O latency (e.g., waiting for images from a camera) by
overlapping I/O operations with computation operations.

2.2.2 Hybrid dataflow operator scheduler. Wedesign a hybrid dataflow
operator scheduler in the execution engine (see 6 in Figure 1), for fur-
ther improving the CPU/GPU utilisation in addition to the pipeline
parallelism. Regarding GPU utilisation, we leverage dynamic batch-
ing in front of the inference operator, encouraging the inference
operator to take a larger batch as input each time. In concert with
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Figure 1: Architecture of the HyperPose C++ execution engine.

the streaming dataflow mechanism, the batching slot only accumu-
lates more input tensors when the GPU becomes the bottleneck.
Such optimisation is beneficial since i) batching reduces the times
of GPU kernel launch thus improving GPU processing through-
put, ii) when the GPU is the bottleneck, batching gets enhanced to
alleviate the congestion [9], and iii) when the GPU is not the bottle-
neck, batching gets weakened for not deteriorating the per-image
response delay. As to CPU threads scheduling, we implemented an
asynchronous thread-level communication mechanism based on
conditional variables. When the bottleneck happens in a CPU-based
operator (e.g., the post-processing operator), the working threads
of non-blocking operators will fall asleep to save CPU cycles for
the bottleneck until the next round starts.

2.3 Implementation and Compatibility
HyperPose supports 3 classes of pose estimation algorithms: 1)
PAF[1] (i.e., OpenPose), 2) PoseProposal[14], and 3) PifPaf[10].

Since developing and deploying pose estimation algorithms have
different objectives, HyperPose separates the implementation for
training and inference but makes their ecosystem well-compatible.

The training library is a Python library implemented using Ten-
sorflow and TensorLayer [2] for DNN construction with Numpy
and other common libraries for post-processing.

For maximum performance, the whole inference engine is no-
tably implemented in C++ 17 for massive low-level code optimi-
sation and parallelism. The GPU inference operator is based on
NVidia TensorRT, one of the fastest DNN inference libraries. The
imaging-related operations are based on OpenCV, and the dataflow
scheduler is implemented by the C++ standard thread library.

The implementation of HyperPose is compatible with many
pose estimation algorithms, such as DEKR [4] and CenterNet [19].
These algorithms share the bottom-up architectures as those (e.g.,
OpenPose and PifPaf) implemented in HyperPose. They are thus
easy to be implemented as extensions to HyperPose.

3 EVALUATION
Our evaluation of HyperPose is driven by two questions: (i) How
flexible is its API when developing and customising real-world
pose estimation algorithms? (ii) How fast is its execution engine in
practical deployment environments?
2For fair accuracy comparison, the weights are from PifPaf and PoseProposal libraries.

Table 1: API study. * denotes single-human datasets only.

Algorithm Dataset DNN Config. Ext.
TF-Pose 1 1 5 5 ✗

PyTorch-Pose 2 3* 13 26 ✗

HyperPose 3 2 10 30 ✓

Table 2: Performance Evaluation of Inference Engine. 2

Configuration Baseline
FPS

Our FPS
(Operators)

Our FPS
(Scheduler)

OpenPose (VGG19) 8[5] 19.78 27.32
OpenPose (MobileNet) 8.5[8] 50.89 84.32
LWOpenPose (ResNet50) N/A 38.09 63.52
LWOpenPose (TinyVGG) N/A 66.62 124.92
PoseProposal (ResNet18) 47.6[16] 212.42 349.17

PifPaf (ResNet50) 14.8[15] 18.5 44.13

Table 3: Accuracy Evaluation of Development Platform.

Configuration Original
Accuracy(map)

Our
Accuracy(map)

OpenPose (VGG19) 58.4 57.0
OpenPose (MobileNet) 28.1 44.2

LWOpenPose (MobileNet) 42.8 46.1
LWOpenPose (Resnet50) N/A 48.2
LWOpenPose (TinyVGG) N/A 47.3

3.1 API Study
We compare our API design with existing Python pose estima-
tion libraries: TF-Pose and PyTorch-Pose. Other libraries such as
OpenPose and AlphaPose are dedicated algorithm implementations
without customised extensions, we thus exclude them here.

In Table 1, our comparison follows five metrics: (i) the number
of pre-defined pose estimation algorithms, (ii) the number of pre-
defined datasets, (iii) the number of pre-defined backbone deep
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neural networks (DNNs), (iv) the total number of pre-defined con-
figurations of the pose estimation system, and (v) the ability to
extend the library to support custom algorithms.

TF-Pose only supports 1 algorithm, 1 dataset, and 5 DNNs, re-
sulting in up to 5 configurations in its design space. PyTorch-Pose
is more flexible, which supports 2 pose estimation algorithms, 3
datasets, and 13 DNNs, summing up to 26 system configurations.
However, PyTorch-Pose only covers single-human scenarios. This
is attributed to the insufficient performance of its algorithm execu-
tion engine in multi-human scenarios. Contrastingly, HyperPose
provides 3 algorithms, 2 datasets, and 10 DNNs, thus supporting up
to 30 system configurations. Moreover, in all these Python libraries,
HyperPose is the only one that supports the extension of new pose
estimation algorithms and provides abstract processing modules
that allow users to build their own development pipeline.

3.2 Performance Evaluation
Table 2 compares the existing libraries and HyperPose. All bench-
marks are evaluated under the same configuration. The test-bed
is of 6 CPU cores and 1 NVIDIA 1070Ti GPU. We measure the
throughput of the pose estimation systems. The benchmark video
stream comes from the Crazy Uptown Funk Flashmob in Sydney
which contains 7458 frames with 640x360 resolution.

We first compare the performance of HyperPose with the Open-
Pose framework [1], which leverages Caffe as its backend and uses
C++ for implementing pre-processing and post-processing. As is
shown in Table 2, OpenPose is only able to achieve 8 FPS on 1070
Ti, which HyperPose can reach 27.32 FPS, outperforming the base-
line by 3.1x. On one hand, this improvement is attributed to the
careful use of the TensorRT library as the implementation of the
inference operator. On the other hand, the hybrid dataflow operator
scheduler makes the execution of HyperPose even 1.38x faster than
the non-scheduled one. TF-Pose [8] leverages TensorFlow as its
inference engine and its post-processing is implemented in C++ as
well. When executing MobileNet-based OpenPose, it only achieves
8.5 FPS, which is 10x slower than HyperPose.

In addition to OpenPose-based algorithms, HyperPose also out-
performs Chainer’s [16] implementation of Pose Proposal Network
by 8 times. We verified the performance consistency by replacing
the backbones and post-processing methods. For example, Hyper-
Pose also beats OpenPose when evaluating a smaller model (i.e.,
MobileNet). This proves that the execution engine design is generic
so that its benefits should be shared by all custom algorithms.

Table 3 shows the accuracy evaluation result of HyperPose in
MS COCO dataset, which includes 5K images in val2017 and 40K
images in val2014. The evaluation dataset split follows the original
implementations.

4 CONCLUSION
When operating pose estimation in the wild, developers often find
it challenging to customise pose estimation algorithms for high
accuracy, while achieving real-time pose estimation using commod-
ity CPUs and GPUs. This paper introduces HyperPose, a library
for fast and flexible human pose estimation. HyperPose provides
users with expressive APIs for declaring custom pose estimation
algorithms. It also provides a high-performance model inference

engine that can efficiently utilise all parallel CPUs and GPUs. This
engine enables HyperPose to achieve 3.1x better performance than
existing libraries, while achieving the same accuracy in challenging
pose estimation tasks.
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