
 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

NEURI: Diversifying DNN Generation
via Inductive Rule Inference

Jiawei Liu, Jinjun Peng, Yuyao Wang, Lingming Zhang
ESEC/FSE 2023 @ San Francisco

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

DL System Correctness is Crucial

2

AI Applications

High-level AI Frameworks

Optimized Libraries

Hardware

AI Compilers & Optimizers

OpenAI Triton

NVIDIA GPUs Google TPUs CPUsAMD GPUs Apple Silicon

SafetyPrivacy
Functionality

User experience

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Generating Models as Tests

3

NeuRI [This work]
NNSmith [ASPLOS 23]

Muffin [ICSE 22]
…

Test Generator
=

Model Generator

Random DNN

DL Framework

Optimized

Non-optimized

Crash

Inconsistency

…

Oracle

How to Generate
Valid Models?

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

● DNN model: a directed graph of operators
● Operator: a function transforming tensors to tensors
● Model validity requires each operator to be

○ Well-formedly constructed
○ Taking inputs of reasonable shapes/dimensions

Generating Valid Models

4

Invalid Model
ksize larger than input sizes

x = … # shape=[1,3,32,32]
y = avg_pool(x, ksize=33)

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Solver-aided Model Generation
A constraint solving approach by NNSmith [ASPLOS 23]
● Define composable constraints for each operator
● Accumulate & solve model-wise constraints

5

x= input() # [x0,x1,x2]
y= relu(x) # [y0,y1,y2]
z= pool(y, ksize,stride)

[x0,x1,x2] =x.shape >0
[y0,y1,y2] =y.shape =x.shape
(y1-ksize)</stride > 0
(y2-ksize)</stride > 0

{x0=1, x1=8, x2=8, ksize=3,<<.}

Collect
Constraints

Solve
Constraints

Concrete DNN

…

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Diversifying Valid Models
● Model diversity is determined by operator diversity
● NNSmith manually supports ~60 operator rules

6

M
od

el
 D

iv
er

si
ty

Operator Diversity

Manual and thus unscalable…

Can we automatically synthesize operator rules?

Automated Rule Inference

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Diversifying Valid Models with NeuRI 🌠

7

Rule Synthesis

Test Suite

Model Hub
…

Filter

Simplify

Augment

Invocations

Trace Tensor APIs

Instrumentation

Summarized
Records

Expr Prune

Rule Reuse

Deduplicate

Rule Inference

Shape
Propagation

Input
Constraints

Rules

Invocations

Forward

Backward

Hybrid DNN Generation

Concolic Op Insertion

GraphIR Models

Interpreter

Compiler

Inconsistent
Results

Runtime
Error

Sanitizer
Error

Oracle Checking

Bug
Reports

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Instrumenting Concrete Operator Invocation
● Instrument operator invocations from regression tests
● Simplify the layout of invocations
● Create more records via mutation

8

avgpool(, ksize=2, …) <>

avgpool, [3,3,3], {ksize=2,…} <> [3,2,2]

Simplify API Input Shapes Attributes Output Shapes

Invocation

Record

RecordRecordRecord
avgpool, [3,3,3], {ksize=3, } <> [3,1,1]avgpool, [2,3,3], {ksize=2, } <> [2,2,2]avgpool, [3,3,4], {ksize=2,…} <> [3,2,3]

Mutate & Validate

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Inferring Operator Rules from Records
Each type (e.g., operator) of records has 3 sets of symbols

9

avgpool, [3,3,3], {ksize=3, } <> [3,1,1]avgpool, [2,3,3], {ksize=2, } <> [2,2,2]avgpool, [3,3,4], {ksize=2,…} <> [3,2,3]

● #1 Shape propagation: {o = f(A U I); o ∈ O}
○ {O0=I0, O1=(I1-ksize)</stride+1, O2=(I2-ksize)</stride+1}
○ #constraints = #output dimensions (|O|)

● #2 Input constraints: {0 =/< f(A U I); …}
○ {ksize>0, stride>0, O*>0, <<.}
○ #constraints is variadic/unknown

Input Shapes I Attributes A Output Shapes O

Question: How to infer f(A U I)?

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Inductive Rule Inference
Let f(A U I) be an expression under arithmetic grammar

10

⟨expr⟩ ҎҎɽ ⟨op⟩ ⟨expr⟩⟨expr⟩ | ⟨item⟩
⟨item⟩ ҎҎɽ ⟨symbol⟩ | ⟨literal⟩
⟨op⟩ ҎҎɽ + | - | × | ÷ | min | max | mod
⟨symbol⟩ ҎҎɽ Symbols from A U I
⟨literal⟩ ҎҎɽ Constant integers

Search-based Inductive Synthesis: Enumerate all terms
under the grammar s.t. ∃ expr satisfies all collected records

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Optimization: Pruning the Search Space
We prune the search space of possible term skeletons by
● Bounded search: limit the AST depth & ⟨literal⟩
● Prune semantically equivalent term skeletons
● Skip constant sub-term ⟨op⟩ ⟨literal⟩⟨literal⟩
● Rarity: one symbol only occur once in a term

11

● Output is a set of term skeletons pruned ahead of time
● At inference time, we substitute the holes in the

skeleton <> actual symbols for each type of records

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

More Optimizations
● Rule reusing

○ Insight: Operator rules can share similar patterns
○ Before rule synthesis, try if the records match any of the inferred rules

12

Given a set of predicate terms C, perform:
C = C-{c} iff conj[C] ⇔ conj[C-{c}]

until a fixed point

● Post deduplication
○ Inferred constraints are boilerplate: (i) not readable and (ii) inefficient

when used in online solving
○ Example: {a + b + 1 > 0, a + b > 0} <> {a + b > 0}

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Model Generation
● Some rules are inferred and others are not
● NNSmith only works for symbolic operator (rule inferred)

13

Concrete
Operator Information

Symbolic
Operator Information

Records

Rule inferredRule not found

Works for meCan we also
make use of this?

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Concolic Model Generation
Using both concrete + symbolic (concolic) information
● Constructing a graph <- Inserting an operator
● Inserting a concrete operator

○ Find invocations with exact shape match

14

x= input() # [3,16,16]
y= pool(x,<<.) # [3,14,14] Concrete

Operator InformationQuery invocation w/
input shape [3,14,14]

attn({},<<.)

x= input() # [3,16,16]
y= pool(x,<<.) # [3,14,14]
z= attn(y,<<.) # inserted

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Concolic Model Generation
Using both concrete + symbolic (concolic) information
● Constructing a graph <- Inserting an operator
● Inserting a concrete operator

○ Find invocations with exact shape match
● Inserting a symbolic operator

○ Solve the constraints immediately to the graph fully concrete

15

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Evaluation Setup

16

● XLA
● TensorFlow Lite

● Torch Inductor
● Torch JIT

NNSmith
ASPLOS 23

Muffin
ICSE 22

DeepREL
FSE 22

Variants
of NeuRI

Systems under Test

Model-Level Fuzzer Op-Level Fuzzer

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Finding 100 Bugs in Four Months
🔥 51 bugs fixed; 81 bugs fixed or confirmed
🔥 8 bugs are marked as PyTorch
🔥 1 security vulnerability

17

Bug reports

“… the bugs you've reported are high quality … don't look like specially fuzzed
set that's impossible to see in practice. They did reveal a few common themes
that are easy to encounter in practice …”

-- PyTorch Developer (#93357)

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Result Highlights

● 24% / 15% coverage improvement over NNSmith
● 95% / 99% generated (5-node) models are valid
● ~100ms to generate and run a model on a single thread

18

Type <1s <10s <100s <1000s

NeuRI 4,660 4,700 4,716 4,758

Rosette 0 83 2,832 4,461

A lot more insightful results detailed our paper!

● 4.6k rules inferred by NeuRI in 1s while Rosette…

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Summarizing NeuRI
● Automatically discovering operator rules!

○ Collecting input-output examples via instrumentation + mutation
○ Efficient inductive program synthesis with domain optimizations
○ Concolic generation to maximize both symbolic & concrete information

● Finding 100 bugs including high-priority & security ones!
● Everything open-sourced!

19

Bug reportsCodePaper

 jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023 @JiaweiLiu_

Discussion: CEGIS v.s. NeuRI?
● CEGIS:

a. E <- Counter examples
b. Rule <- Inductive synthesis over E
c. Verify Rule; if fail E += {counter example} and go to a.

● NeuRI
a. E <- Passing/counter examples ahead of time (via instrumentation

& mutation)
b. Rule <- Inductive synthesis over E
c. … verifier not available for Operator Rules… so we are done here

20

