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DL System Correctness is Crucial
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Generating Models as Tests
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● DNN model: a directed graph of operators
● Operator: a function transforming tensors to tensors
● Model validity requires each operator to be

○ Well-formedly constructed
○ Taking inputs of reasonable shapes/dimensions

Generating Valid Models
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Invalid Model
ksize larger than input sizes

x = … # shape=[1,3,32,32]
y = avg_pool(x, ksize=33)
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Solver-aided Model Generation
A constraint solving approach by NNSmith [ASPLOS 23]
● Define composable constraints for each operator
● Accumulate & solve model-wise constraints
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x= input() # [x0,x1,x2]
y= relu(x) # [y0,y1,y2]
z= pool(y, ksize,stride)

[x0,x1,x2] =x.shape >0
[y0,y1,y2] =y.shape =x.shape
(y1-ksize)</stride > 0
(y2-ksize)</stride > 0

{x0=1, x1=8, x2=8, ksize=3,<<.}

Collect
Constraints

Solve 
Constraints

Concrete DNN

…
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Diversifying Valid Models
● Model diversity is determined by operator diversity
● NNSmith manually supports ~60 operator rules
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Manual and thus unscalable…

Can we automatically synthesize operator rules?

Automated Rule Inference
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Diversifying Valid Models with NeuRI 🌠 

7

Rule Synthesis

Test Suite

Model Hub
…

Filter

Simplify

Augment

Invocations

Trace Tensor APIs

Instrumentation

Summarized
Records

Expr Prune

Rule Reuse

Deduplicate

Rule Inference

Shape
Propagation

Input
Constraints

Rules

Invocations

Forward

Backward

Hybrid DNN Generation

Concolic Op Insertion

GraphIR Models

Interpreter

Compiler

Inconsistent
Results

Runtime
Error

Sanitizer
Error

Oracle Checking

Bug 
Reports



    jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023    @JiaweiLiu_

Instrumenting Concrete Operator Invocation
● Instrument operator invocations from regression tests
● Simplify the layout of invocations
● Create more records via mutation
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avgpool(       , ksize=2, …) <> 

avgpool, [3,3,3], {ksize=2,…} <> [3,2,2]

Simplify API Input Shapes Attributes Output Shapes

Invocation

Record

RecordRecordRecord
avgpool, [3,3,3], {ksize=3, } <> [3,1,1]avgpool, [2,3,3], {ksize=2, } <> [2,2,2]avgpool, [3,3,4], {ksize=2,…} <> [3,2,3]

Mutate & Validate
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Inferring Operator Rules from Records
Each type (e.g., operator) of records has 3 sets of symbols
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avgpool, [3,3,3], {ksize=3, } <> [3,1,1]avgpool, [2,3,3], {ksize=2, } <> [2,2,2]avgpool, [3,3,4], {ksize=2,…} <> [3,2,3]

● #1 Shape propagation: {o = f(A U I); o ∈ O} 
○ {O0=I0, O1=(I1-ksize)</stride+1, O2=(I2-ksize)</stride+1}
○ #constraints = #output dimensions (|O|)

● #2 Input constraints: {0 =/< f(A U I); …}
○ {ksize>0, stride>0, O*>0, <<.}
○ #constraints is variadic/unknown

Input Shapes I Attributes A Output Shapes O

Question: How to infer  f(A U I)?
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Inductive Rule Inference
Let f(A U I) be an expression under arithmetic grammar
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⟨expr⟩    ҎҎɽ ⟨op⟩ ⟨expr⟩⟨expr⟩ | ⟨item⟩
⟨item⟩    ҎҎɽ ⟨symbol⟩ | ⟨literal⟩
⟨op⟩      ҎҎɽ + | - | × | ÷ | min | max | mod
⟨symbol⟩  ҎҎɽ Symbols from A U I
⟨literal⟩ ҎҎɽ Constant integers

Search-based Inductive Synthesis: Enumerate all terms 
under the grammar s.t. ∃ expr satisfies all collected records
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Optimization: Pruning the Search Space
We prune the search space of possible term skeletons by
● Bounded search: limit the AST depth & ⟨literal⟩
● Prune semantically equivalent term skeletons
● Skip constant sub-term ⟨op⟩ ⟨literal⟩⟨literal⟩
● Rarity: one symbol only occur once in a term
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● Output is a set of term skeletons pruned ahead of time 
● At inference time, we substitute the holes in the 

skeleton <> actual symbols for each type of records
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More Optimizations
● Rule reusing

○ Insight: Operator rules can share similar patterns
○ Before rule synthesis, try if the records match any of the inferred rules

12

Given a set of predicate terms C, perform:
C = C-{c} iff conj[C] ⇔ conj[C-{c}] 

until a fixed point

● Post deduplication
○ Inferred constraints are boilerplate: (i) not readable and (ii) inefficient 

when used in online solving
○ Example: {a + b + 1 > 0, a + b > 0} <> {a + b > 0}
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Model Generation
● Some rules are inferred and others are not 
● NNSmith only works for symbolic operator (rule inferred)
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Concrete 
Operator Information

Symbolic
Operator Information

Records

Rule inferredRule not found

Works for meCan we also 
make use of this?
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Concolic Model Generation
Using both concrete + symbolic (concolic) information
● Constructing a graph <- Inserting an operator
● Inserting a concrete operator

○ Find invocations with exact shape match
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x= input()     # [3,16,16]
y= pool(x,<<.) # [3,14,14] Concrete 

Operator InformationQuery invocation w/
input shape [3,14,14]

attn({},<<.)

x= input()     # [3,16,16]
y= pool(x,<<.) # [3,14,14]
z= attn(y,<<.) # inserted



    jiawei6@illinois.eduNeuRI @ ESEC/FSE 2023    @JiaweiLiu_

Concolic Model Generation
Using both concrete + symbolic (concolic) information
● Constructing a graph <- Inserting an operator
● Inserting a concrete operator

○ Find invocations with exact shape match
● Inserting a symbolic operator

○ Solve the constraints immediately to the graph fully concrete
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Evaluation Setup
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● XLA 
● TensorFlow Lite 

● Torch Inductor
● Torch JIT

NNSmith
ASPLOS 23

Muffin
ICSE 22

DeepREL
FSE 22

Variants 
of NeuRI

Systems under Test

Model-Level Fuzzer Op-Level Fuzzer
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Finding 100 Bugs in Four Months
🔥 51 bugs fixed; 81 bugs fixed or confirmed
🔥 8 bugs are marked as PyTorch 
🔥 1 security vulnerability
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Bug reports

“… the bugs you've reported are high quality … don't look like specially fuzzed 
set that's impossible to see in practice. They did reveal a few common themes 
that are easy to encounter in practice …”

-- PyTorch Developer (#93357)
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Result Highlights

● 24%  /  15% coverage improvement over NNSmith
● 95%  /  99% generated (5-node) models are valid
● ~100ms to generate and run a model on a single thread
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Type <1s <10s <100s <1000s

NeuRI 4,660 4,700 4,716 4,758

Rosette 0  83 2,832 4,461

A lot more insightful results detailed our paper!

● 4.6k rules inferred by NeuRI in 1s while Rosette… 
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Summarizing NeuRI
● Automatically discovering operator rules!

○ Collecting input-output examples via instrumentation + mutation
○ Efficient inductive program synthesis with domain optimizations
○ Concolic generation to maximize both symbolic & concrete information

● Finding 100 bugs including high-priority & security ones!
● Everything open-sourced!
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Bug reportsCodePaper
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Discussion: CEGIS v.s. NeuRI?
● CEGIS:

a. E <- Counter examples
b. Rule <- Inductive synthesis over E
c. Verify Rule; if fail E += {counter example} and go to a.

● NeuRI
a. E <- Passing/counter examples ahead of time (via instrumentation 

& mutation)
b. Rule <- Inductive synthesis over E
c. … verifier not available for Operator Rules… so we are done here
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