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DL System Correctness is Crucial
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Generating Models as Tests
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e —
Generating Valid Models

e DNN model: a directed graph of operators
e Operator: a function transforming tensors to tensors

e Model validity requires each operator to be
o Well-formedly constructed
o Taking inputs of reasonable shapes/dimensions

Invalid Model

ksize larger than input sizes

= .. # shape=[1,3,32,32]
y = avg_pool(x, ksize=33)

X
I
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Solver-aided Model Generation

A constraint solving approach by

NNSmith [ASPLOS 23]

e Define composable constraints for each operator
e Accumulate & solve model-wise constraints

NNSmith

x= input() # [x0,x1,x2] il

= <
y= relu(x) # [y0O,vyl,y2] ‘

z= pool(y, ksize,stride)

Collect
Constraints

e e
N

— {x6=1
Concrete DNN
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.
[x0,x1,x2] =x.shape >0
[vO,y1,y2] =y.shape =x.shape
(yl-ksize)//stride > 0O

(y2-ksize) //stride > 0O
- cees

Solve Zg
Constraints

, x1=8, x2=8, ksize=3, ...}
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E———
Diversifying Valid Models

e Model diversity is determined by operator diversity
e NNSmith manually supports ~60 operator rules

Can we automatically synthesize operator rules?
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R
Diversifying Valid Models with NeuRI

Rule Inference
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E———
Instrumenting Concrete Operator Invocation

e Instrument operator invocations from regression tests
e Simplify the layout of invocations
e (Create more records via mutation

Invocation ( %% %_ , ksize=2, ..) = H

‘Simplify 1111
API Input Shapes Attributes Output Shapes

Record / [31313]1 {kSize:21m} = [31212]
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E———
Inferring Operator Rules from Records

Each type (e.g., operator) of records has 3 sets of symbols
Input Shapes I Attnbutes A Output Shapes 0

r- = =1 Cr. - ° . -
Fra - =1 rl.....:_-_n 1: [ n ~ r\'l

r - -2 VA | 1. ° __ _ ~ ~ r - ~ =

Question: How to infer f(A U I)?
e #TShapepropagation: {0 = T(A U I); o0 € OF

o {0,=I,, 0,=(I,-ksize)//stride+1, 0,=(I,-ksize)//stride+l}
o #constraints = #output dimensions (|0])

e #2 Input constraints: {0 =/< f(A U I); ..}
o {ksize>0, stride>0, 0,>0, ...}
o #constraints is variadic/unknown

I & NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ % jiaweié@illinois.edu 9



R
Inductive Rule Inference

Let f(A U I) be an expression under arithmetic grammar

(expr) = (op) (expr){expr) | {(item)
(item) = (symbol) | (literal)

Cop) =+ | -1 x| = | min | max | mod
(symbol) = Symbols from A U I

(literal) ::= Constant integers

Search-based Inductive Synthesis: Enumerate all terms
under the grammar s.t. 3 expr satisfies all collected records
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e —
Optimization: Pruning the Search Space

We prune the search space of possible term skeletons by

e Bounded search: limit the AST depth & (literal)

e Prune semantically equivalent term skeletons

e Skip constant sub-term (op) (literal){(literal)
e Rarity: one symbol only occur once in a term

e Output is a set of term skeletons pruned ahead of time
e Atinference time, we substitute the holes in the
skeleton — actual symbols for each type of records
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E———
More Optimizations

e Rule reusing
o Insight: Operator rules can share similar patterns
o Before rule synthesis, try if the records match any of the inferred rules

e Post deduplication

o Inferred constraints are boilerplate: (i) not readable and (ii) inefficient
when used in online solving
o Example:{a + b + 1 >0, a+b>0—>{a +b >0}

Given a set of predicate terms C, perform:
C = C-{c} iff conj[C] ¢ conj[C-{c}]
until a fixed point
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R
Model Generation

e Some rules are inferred and others are not
e NNSmith only works for symbolic operator (rule inferred)

. Works for me

Can we also : -
N\, A 7 -/\/
make use of this? o NNSmith -
\\/\_/\_/ H -\ ./ '_LL_‘ '.V
- o/ 5 18
. Records =

Rule not found Rule inferred

Concrete Symbolic
Operator Information Operator Information
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R
Concolic Model Generation

Using both concrete + symbolic (concolic) information

e Constructing a graph < Inserting an operator

e [nserting a concrete operator
o Find invocations with exact shape match

Xx= input() # [3,16,16]
Concrete

Y= p001 (Xr 00C ) # [3 14, 14] Query invocation w/ = Operator Information
input shape [3,14,14]

x= input() # [3,16,16] ‘

y= pool(x, ...) # [3,14,14]
: attn({}, ...)
z= attn(y, ...) # inserted _
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R
Concolic Model Generation

Using both concrete + symbolic (concolic) information

e Constructing a graph < Inserting an operator

e [nserting a concrete operator
o Find invocations with exact shape match

e Inserting a symbolic operator
o Solve the constraints immediately to the graph fully concrete
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e —
Evaluation Setup

Systems under Test

O PyTo rch  “F TensorFlow

e Torch Inductor o XLA
e Torch]IT e TensorFlow Lite

NNSmith Muffin Variants DeepREL
of NeuRlI

Model-Level Fuzzer Op-Level Fuzzer
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E———
Finding 100 Bugs in Four Months

@ 51 bugs fixed; 81 bugs fixed or confirmed _'E_ll.?_-.El
@ 8 bugs are marked as PyTorch (R D i '
Ot

& 1 security vulnerability (Moderate) 6.3 /10
Bug reports

“... the bugs you've reported are high quality ... don't look like specially fuzzed
set that's impossible to see in practice. They did reveal a few common themes
that are easy to encounter in practice ...”

-- PyTorch Developer (#93357)
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e —
Result Highlights

U O
24% / 15% coverage improvement over NNSmith

95% / 99% generated (5-node) models are valid
~100ms to generate and run a model on a single thread
4.6k rules inferred by NeuRl in 1s while Rosette...

Type <1s <10s <100s <1000s
NeuRI 4,660 4,700 4,716 4,758
Rosette 0 83 2,832 4,461

A lot more insightful results detailed our paper!
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E———
Summarizing NeuRlI

e Automatically discovering operator rules!
o Collecting input-output examples via instrumentation + mutation
o Efficient inductive program synthesis with domain optimizations
o Concolic generation to maximize both symbolic & concrete information

e Finding 100 bugs including high-priority & security ones!
e Everything open-sourced!
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R
Discussion: CEGIS v.s. NeuRI?

o CEGIS;

a. E <-Counter examples
b. Rule <- Inductive synthesis over E
c. Verify Rule; if fail E += {counter example} and go to a.

e NeuRl

a. E <-Passing/counter examples ahead of time (via instrumentation
& mutation)

b. Rule <- Inductive synthesis over E

c. ... verifier not available for Operator Rules... so we are done here
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