

NEURI: Diversifying DNN Generation via Inductive Rule Inference

Jiawei Liu, Jinjun Peng, Yuyao Wang, Lingming Zhang ESEC/FSE 2023 @ San Francisco

DL System Correctness is Crucial

NeuRI @ ESEC/FSE 2023

🗶 @JiaweiLiu_

Generating Models as Tests

Test Generator

NeuRI [This work] NNSmith [ASPLOS 23] Muffin [ICSE 22]

...

🕁 🔘

How to Generate Valid Models?

NeuRI @ ESEC/FSE 2023

X @JiaweiLiu_

Generating Valid Models

- **DNN model:** a directed graph of operators
- **Operator:** a function transforming tensors to tensors
- Model validity requires each operator to be
 - Well-formedly constructed
 - Taking inputs of reasonable shapes/dimensions

Solver-aided Model Generation

A constraint solving approach by NNSmith [ASPLOS 23]

- **Define** composable constraints for each operator
- Accumulate & solve model-wise constraints

Diversifying Valid Models

📩 Ü

- Model diversity is determined by operator diversity
- NNSmith manually supports **~60** operator rules

Can we *automatically* synthesize operator rules?

Instrumenting Concrete Operator Invocation

- Instrument operator invocations from regression tests
- Simplify the layout of invocations
- Create more records via mutation

Inferring Operator Rules from Records

Each type (e.g., operator) of records has **3 sets of symbols**

Input Shapes **I** Attributes **A** Output Shapes **O** \Rightarrow

Question: How to infer f(A U I)?

- #1 Shape propagation: $\{o = f(A \cup I); o \in O\}$
 - $\circ \{\mathbf{0}_{0}=\mathbf{I}_{0}, \mathbf{0}_{1}=(\mathbf{I}_{1}-\mathrm{ksize})//\mathrm{stride}+1, \mathbf{0}_{2}=(\mathbf{I}_{2}-\mathrm{ksize})//\mathrm{stride}+1\}$
 - #constraints = #output dimensions (|0|)
- **#2 Input constraints:** {0 =/< f(A U I); ...}
 - o {ksize>0, stride>0, 0,>0, ...}
 - #constraints is variadic/unknown

Inductive Rule Inference

Let **f(A U I)** be an expression under arithmetic grammar

<pre></pre>	::=	(0	יא (פ	expr)	<mark>∕e</mark> xp	or)	<pre>(item)</pre>	
<pre>(item)</pre>	::=	<pre> {symbol} (literal) </pre>						
(op)	::=	+	-	×	÷	min	max	mod
<pre> symbol </pre>	::=	Symbols from A U I						
<pre>(literal)</pre>	::=	Constant integers						

Search-based Inductive Synthesis: Enumerate all terms under the grammar s.t. ∃ expr *satisfies* all collected records

Optimization: Pruning the Search Space

We **prune** the search space of possible term skeletons by

- **Bounded search**: limit the AST depth & **(literal)**
- Prune **semantically equivalent** term skeletons
- Skip constant sub-term (op) (literal)
- **Rarity**: one symbol only occur once in a term
- Output is a set of term skeletons pruned ahead of time
 At inference time, we substitute the holes in the skeleton → actual symbols for each type of records

More Optimizations

• Rule reusing

- Insight: Operator rules can share similar patterns
- Before rule synthesis, try if the records match any of the inferred rules

• Post deduplication

- Inferred constraints are boilerplate: (i) not readable and (ii) inefficient when used in online solving
- Example: $\{a + b + 1 > 0, a + b > 0\} \rightarrow \{a + b > 0\}$

Given a set of *predicate* terms C, perform: C = C-{c} *iff* conj[C] ⇔ conj[C-{c}] until a fixed point

Model Generation

- Some rules are inferred and others are not
- NNSmith only works for symbolic operator (rule inferred)

Concolic Model Generation

Using both **concrete** + **symbolic** (concolic) information

- Constructing a graph ← Inserting an operator
- Inserting a **concrete** operator
 - Find invocations with exact shape match

💥 @JiaweiLiu

∑@ jiawei6@illinois.edu

14

Concolic Model Generation

Using both **concrete** + **symbolic** (concolic) information

- Constructing a graph ← Inserting an operator
- Inserting a **concrete** operator
 - Find invocations with exact shape match
- Inserting a **symbolic** operator
 - Solve the constraints immediately to the graph *fully concrete*

Evaluation Setup

Systems under Test

Finding 100 Bugs in Four Months

- **51** bugs fixed; **81** bugs fixed or confirmed
- **8** bugs are marked as PyTorch high priority
- 1 security vulnerability (Moderate) 6.3 / 10

"... the bugs you've reported are **high quality** ... don't look like specially fuzzed set that's impossible to see in **practice**. They did **reveal a few common themes** that are easy to encounter in **practice** ..."

-- PyTorch Developer (#93357)

Result Highlights

- **24% / 15%** coverage improvement over NNSmith
- 95% / 99% generated (5-node) models are valid
- ~100ms to generate and run a model on a single thread
- **4.6k rules** inferred by NeuRI in **1s** while Rosette...

Туре	<1s	<10s	<100s	<1000s
NeuRI	4,660	4,700	4,716	4,758
Rosette	0	83	2,832	4,461

A lot more insightful results detailed our paper!

Summarizing NeuRI

- Automatically discovering operator rules!
 - Collecting input-output examples via instrumentation + mutation
 - Efficient inductive program synthesis with domain optimizations
 - Concolic generation to maximize both symbolic & concrete information
- Finding **100** bugs including high-priority & security ones!
- Everything open-sourced!

Discussion: CEGIS v.s. NeuRI?

- CEGIS:
 - a. E <- Counter examples
 - b. Rule <- Inductive synthesis over E
 - c. **Verify Rule**; if fail E += {counter example} and go to a.
- NeuRI
 - a. E <- Passing/counter examples ahead of time (via instrumentation & mutation)
 - b. Rule <- Inductive synthesis over E
 - c. ... verifier not available for Operator Rules... so we are done here

