NeuRl: Diversifying DNN Generation
via Inductive Rule Inference

Jiawei Liu, Jinjun Peng, Yuyao Wang, Lingming Zhang
ESEC/FSE 2023 @ San Francisco

UNIVERSITY OF Gb 7 J,
14 B Y 4
S N \]

I L LI N O I s COLUMBIA UNIVERSITY

URBANA-CHAMPAIGN NANJING UNIVERSITY

X b @

NeuR| @ ESEC/FSE 2023 X @Jiaweiliu_ % jiaweié@illinois.edu

DL System Correctness is Crucial

AI Applications

4¢Bard & © D

High-level AI Frameworks

4, ﬁ() PyTorch 1F TensorFlow

/llec AI Compilers & Optimizers Optimized Libraries

Use, ‘o, ¥ O x %%EU%NMXE %tvm D:@_ CUDNN
/ o (9//'{1, @ OpenAI Triton

Q s ‘ ngdw
e [a

NVIDIA GPUs AMD GPUSs Google TPUs CPUs

s NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ % jiaweié@illinois.edu

2

e —
Generating Models as Tests

Test Generator

Model Generator DL Framework Oracle
Crash
NS . < Of > Inconsistency
N »‘//\ i Non-optimized ' ’ -
N -

NeuRl [This work] "N
NNSmith [ASPLOS 23]

Muffin [ICSE 22] How to Generate

Valid Models? -

I & NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ % jiaweié@illinois.edu 3

e —
Generating Valid Models

e DNN model: a directed graph of operators
e Operator: a function transforming tensors to tensors

e Model validity requires each operator to be
o Well-formedly constructed
o Taking inputs of reasonable shapes/dimensions

Invalid Model

ksize larger than input sizes

= .. # shape=[1,3,32,32]
y = avg_pool(x, ksize=33)

X
I

I & NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ % jiaweié@illinois.edu 4

Solver-aided Model Generation

A constraint solving approach by

NNSmith [ASPLOS 23]

e Define composable constraints for each operator
e Accumulate & solve model-wise constraints

NNSmith

x= input() # [x0,x1,x2] il

= <
y= relu(x) # [y0O,vyl,y2] ‘

z= pool(y, ksize,stride)

Collect
Constraints

e e
N

— {x6=1
Concrete DNN

NeuRI @ ESEC/FSE 2023

.
[x0,x1,x2] =x.shape >0
[vO,y1,y2] =y.shape =x.shape
(yl-ksize)//stride > 0O

(y2-ksize) //stride > 0O
- cees

Solve Zg
Constraints

, x1=8, x2=8, ksize=3, ...}

X @Jiaweiliu_ % jiaweié@illinois.edu 5

E———
Diversifying Valid Models

e Model diversity is determined by operator diversity
e NNSmith manually supports ~60 operator rules

Can we automatically synthesize operator rules?

>
.E

v

P

]
2 A

Q NNSmith
o ... S
c — v W‘ /:"»
o

=

& -~ Manual and thus unscalable...

— >
Operator Diversity

I o NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ % jiaweié@illinois.edu 6

R
Diversifying Valid Models with NeuRI

Rule Inference

Instrumentation Hybrid DNN Generation .
||| Rules l — Oracle Checking
Test Suite = “ ! Int t » Inconsistent
Invocations| | /N nterpreter Results
Model Hub \Backward v -
Shape Input (L S0 - Runtime |
Propagation lConstr'aints :FOPWC'PCI/ \: / Compiter » Error
| S e | N
Trace Tensor AfIs | S Sanitizer
-\ LEXpP Prune . @ k Error
-[Invocations : :
Rule Reuse Concolic Op Insertion
Filter Deduplicate l =\
Simplify l Bug

Rule Synthesis

) L QSD
SUmmapized‘ [[GraphIR -[[Models |OF

Records

Reports

Augment

X b @

NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ % jiaweié@illinois.edu 7

E———
Instrumenting Concrete Operator Invocation

e Instrument operator invocations from regression tests
e Simplify the layout of invocations
e (Create more records via mutation

Invocation (%% %_ , ksize=2, ..) = H

‘Simplify 1111
API Input Shapes Attributes Output Shapes

Record / [31313]1 {kSize:21m} = [31212]

‘I\/I utate & Validate

| FF Z
a
ﬂ_l Record | [3

4

21 rhAJqﬂ_1 1 2 7a 2
7 21 1=$ [n N N7

IAH L B o N

,3,4], {k51ze2 }=>[323]
T ® X @Jiaweiliu. S jiawei6@illinois.edu 8

E———
Inferring Operator Rules from Records

Each type (e.g., operator) of records has 3 sets of symbols
Input Shapes I Attnbutes A Output Shapes 0

r- = =1 Cr. - ° . -
Fra - =1 rl.....:_-_n 1: [n ~ r\'l

r - -2 VA | 1. ° __ _ ~ ~ r - ~ =

Question: How to infer f(A U I)?
e #TShapepropagation: {0 = T(A U I); o0 € OF

o {0,=I,, 0,=(I,-ksize)//stride+1, 0,=(I,-ksize)//stride+l}
o #constraints = #output dimensions (|0])

e #2 Input constraints: {0 =/< f(A U I); ..}
o {ksize>0, stride>0, 0,>0, ...}
o #constraints is variadic/unknown

I & NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ % jiaweié@illinois.edu 9

R
Inductive Rule Inference

Let f(A U I) be an expression under arithmetic grammar

(expr) = (op) (expr){expr) | {(item)
(item) = (symbol) | (literal)

Cop) =+ | -1 x| = | min | max | mod
(symbol) = Symbols from A U I

(literal) ::= Constant integers

Search-based Inductive Synthesis: Enumerate all terms
under the grammar s.t. 3 expr satisfies all collected records

s NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ L% jiaweié@illinois.edu 10

e —
Optimization: Pruning the Search Space

We prune the search space of possible term skeletons by

e Bounded search: limit the AST depth & (literal)

e Prune semantically equivalent term skeletons

e Skip constant sub-term (op) (literal){(literal)
e Rarity: one symbol only occur once in a term

e Output is a set of term skeletons pruned ahead of time
e Atinference time, we substitute the holes in the
skeleton — actual symbols for each type of records

NeuRIl @ ESEC/FSE 2023 X @Jiaweiliu_ L% jiaweié@illinois.edu 11

E———
More Optimizations

e Rule reusing
o Insight: Operator rules can share similar patterns
o Before rule synthesis, try if the records match any of the inferred rules

e Post deduplication

o Inferred constraints are boilerplate: (i) not readable and (ii) inefficient
when used in online solving
o Example:{a + b + 1 >0, a+b>0—>{a +b >0}

Given a set of predicate terms C, perform:
C = C-{c} iff conj[C] ¢ conj[C-{c}]
until a fixed point

s NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ % jiaweié@illinois.edu 12

R
Model Generation

e Some rules are inferred and others are not
e NNSmith only works for symbolic operator (rule inferred)

. Works for me

Can we also : -
N\, A 7 -/\/
make use of this? o NNSmith -
\\/_/_/ H -\ ./ '_LL_‘ '.V
- o/ 5 18
. Records =

Rule not found Rule inferred

Concrete Symbolic
Operator Information Operator Information

I & NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ % jiaweié@illinois.edu

R
Concolic Model Generation

Using both concrete + symbolic (concolic) information

e Constructing a graph < Inserting an operator

e [nserting a concrete operator
o Find invocations with exact shape match

Xx= input() # [3,16,16]
Concrete

Y= p001 (Xr 00C) # [3 14, 14] Query invocation w/ = Operator Information
input shape [3,14,14]

x= input() # [3,16,16] ‘

y= pool(x, ...) # [3,14,14]
: attn({}, ...)
z= attn(y, ...) # inserted _

s NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ % jiaweié@illinois.edu 14

R
Concolic Model Generation

Using both concrete + symbolic (concolic) information

e Constructing a graph < Inserting an operator

e [nserting a concrete operator
o Find invocations with exact shape match

e Inserting a symbolic operator
o Solve the constraints immediately to the graph fully concrete

s NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ % jiaweié@illinois.edu 15

e —
Evaluation Setup

Systems under Test

O PyTo rch “F TensorFlow

e Torch Inductor o XLA
e Torch]IT e TensorFlow Lite

NNSmith Muffin Variants DeepREL
of NeuRlI

Model-Level Fuzzer Op-Level Fuzzer
T X @Iiaweiliv. S jiawei6@illinois.cdv 16

E———
Finding 100 Bugs in Four Months

@ 51 bugs fixed; 81 bugs fixed or confirmed _'E_ll.?_-.El
@ 8 bugs are marked as PyTorch (R D i '
Ot

& 1 security vulnerability (Moderate) 6.3 /10
Bug reports

“... the bugs you've reported are high quality ... don't look like specially fuzzed
set that's impossible to see in practice. They did reveal a few common themes
that are easy to encounter in practice ...”

-- PyTorch Developer (#93357)

I & NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ % jiawei6@illinois.edu 17

e —
Result Highlights

U O
24% / 15% coverage improvement over NNSmith

95% / 99% generated (5-node) models are valid
~100ms to generate and run a model on a single thread
4.6k rules inferred by NeuRl in 1s while Rosette...

Type <1s <10s <100s <1000s
NeuRI 4,660 4,700 4,716 4,758
Rosette 0 83 2,832 4,461

A lot more insightful results detailed our paper!

¥ & NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ % jiaweié@illinois.edu

18

E———
Summarizing NeuRlI

e Automatically discovering operator rules!
o Collecting input-output examples via instrumentation + mutation
o Efficient inductive program synthesis with domain optimizations
o Concolic generation to maximize both symbolic & concrete information

e Finding 100 bugs including high-priority & security ones!
e Everything open-sourced!

S A
; AR
e LA
it Bl
Code Bug reports

T &

NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ L% jiaweié@illinois.edu 19

R
Discussion: CEGIS v.s. NeuRI?

o CEGIS;

a. E <-Counter examples
b. Rule <- Inductive synthesis over E
c. Verify Rule; if fail E += {counter example} and go to a.

e NeuRl

a. E <-Passing/counter examples ahead of time (via instrumentation
& mutation)

b. Rule <- Inductive synthesis over E

c. ... verifier not available for Operator Rules... so we are done here

s NeuRI @ ESEC/FSE 2023 X @Jiaweiliu_ L% jiaweié@illinois.edu 20

