
Is Your Code Generated by ChatGPT Really Correct?
Rigorous Evaluation of Large Language Models for Code Generation

Jiawei Liu ? Chunqiu Steven Xia ? Yuyao Wang Lingming Zhang

University of Illinois Urbana-Champaign Nanjing University ?Co-primary

TL;DR Evaluating LLM-generated code over code synthesis
benchmarks with “3 test-cases” is NOT enough!

Introduction

1. Program synthesis is a long-standing problem in computer science
2. LLM-based codegen shows great promise to synthesize code following user intent
3. Existing programming benchmarks are manually constructed with small number of

test-cases in order to measure functional correctness

Is the code generated by LLMs really correct?

def common(l1: list, l2: list) =ɬ list:
 """Return sorted unique common elements for two lists"""
 common_elems = list(set(l1).intersection(set(l2)))
 common_elems.sort()
 return list(set(common_elems))

✅ common([4,3,2,8], []) => []
✅ common([5,3,2,8], [3,2]) => [2,3]

list

set is unordered!
 list=ɬset is NOT
order-preserving!

❌ common([6,8,1], [6,8,1]) => [8,1,6]

generated by
ChatGPT

Fig. 1. ChatGPT-generated wrong code was considered correct by HumanEval

Existing code benchmarks (e.g., HumanEval) heavily rely on manually
constructed test-cases to evaluate LLM solutions. However, crafting high-quality
tests is laborious and as such, current programming benchmarks are inadequate for
assessing the actual correctness of LLM-generated code with the following limitations:
Insufficient testing. Current programming benchmarks often only include < 10
test-cases per problem. Furthermore, these test-cases are too simply to fully explore
the functionality of the code or cover corner cases. As such, logically flawed solutions
can still pass all tests and be misconsidered as correct by existing benchmarks.
Imprecise problem description. Natural language description of the problem is
used as the input for code generation. However, these task descriptions in existing
benchmarks are oftentimes too vague to fully clarify the expected program behaviours.
As such, different LLMs can interpret the problem differently, leading to capable
LLMs misjudged as incapable.

Can we rigorously evaluate the functional correctness?

We propose: EvalPlus – an evaluation framework to augment code benchmarks
with additional tests for precisely evaluating the correctness of LLM-generated code.
We produce: HumanEval+ – an extended version of HumanEval with
80× more tests and perform extensive evaluation on over 26 popular LLMs.
We found: that pass@k on the new and more rigorous dataset is regularized to
up-to 19.3-28.9% lower than the base HumanEval.

Approach

def sample_56(input):
...

def sample_2(input):
...

def sample_1(input):
...

input

def groundtruth(input):
...

input input

base inputs

original dataset

seed pool

 ChatGPT

seed inputs

type-aware
mutation

def sample_0(input):
...

LLM samples

differential
testing

def sample_11(input):
...

Rigorously validated
LLM samples

pass

generate corner-case inputs

generate difficult inputs

generate complex inputs

new inputs

def groundtruth(input):
...

EvalPlus dataset

new input

x gt

f

f(x) = gt(x)?

inputinputinputinputinput

Test-suite Reduction

coverage
mutant kills
sample kills

set
cover

Test Input Creation
EvalPlus automatically generates a set of high-quality test-cases to rigorously evaluate
the functional correctness of LLM-generated code.
Seed initialization via ChatGPT EvalPlus first construct prompt using (i) the
ground-truth solution of the problem; (ii) a set of test inputs as demonstration; and
(iii) an instruction to encourage ChatGPT to come up with interesting inputs.
Type-aware input mutation. EvalPlus then continuously mutates existing inputs
using mutation operators by observing the specific input types. Through this process,
EvalPlus can efficiently obtain a large set of high-quality test-cases.
Test-suite reduction EvalPlus can also perform test-suite reduction using a variety
of requirements (i.e., coverage, mutant and sampling killings) to find a minimal
subset of test-cases to both ensure effectiveness and reduce testing time.

Program Input Contracts
To ensure generated test-cases do not invoke any invalid program behaviors, we
systematically add input contracts in the form of code assertions. Using program
contracts, EvalPlus directly filters out any invalid test inputs.

HumanEval+

EvalPlus transforms HumanEval into HumanEval+ by
adding 80x unique test-cases and also fixing any incorrect ground-
truth solutions.

#Tests #Tasks
Avg. Medium Min. Max.

HumanEval 9.6 7.0 1 105
164HumanEval+ 764.1 982.5 12 1,100

HumanEval+-mini 16.1 13.0 5 110

Result Highlights

Evaluation using HumanEval+. We evaluate 26 popular and state-of-the-art
LLMs (e.g., GPT-4, ChatGPT, and CodeLlama) on HumanEval+.

Almost all pass@k consistently drop compared to using the base benchmark.
Performance drop is significant with up-to 23.1% (greedy) / 19.3% (pass@1) /
24.9% (pass@10) / 28.9% (pass@100) reduction over the evaluated models.
Both WizardCoder-CodeLlama and Phind-CodeLlama outperform ChatGPT on
HumanEval+, while none of them could on HumanEval.

Pass rate distribution. Not all HumanEval problems see an equal amount
of drop in pass rate. We observe that multi-condition and reasoning problems
in particular are the most difficult for LLMs to solve.

Problems (Sorted by HumanEval pass rate)

100

101

102

A
ve

ra
ge

P
as

s
R

at
e

(%
) HumanEval

HumanEval+

Incorrect ground-truth in HumanEval. We also found 18 defects (11% of
problems) even in the original ground-truth in HumanEval. Categorized into (i)
Unhandled edge-case; (ii) Bad logic; and (iii) Performance issue.

def valid_date(date):
 ...
 if month in [1,3,5,7,8,10,12] and day < 1 or day > 31:
 return False
 if month in [4,6,9,11] and day < 1 or day > 30:
 return False
 ...

12-31-1999 False

HUMANEVAL+ input
12/31/1999

is a valid date!A bracket is needed!

Try It Out

EvalPlus is available on PyPI (evalplus) and GitHub (evalplus/evalplus)

So ... who is the best LLM coder? Take a look at the EvalPlus
leaderboard: evalplus.github.io/leaderboard.html

paper leaderboard code

@ https://github.com/evalplus/evalplus 37th Annual Conference on Neural Information Processing Systems – NeurIPS 2023 B {jiawei6, chunqiu2}@illinois.edu

https://pypi.org/project/evalplus/
https://github.com/evalplus/evalplus
https://evalplus.github.io/leaderboard.html
https://github.com/evalplus/evalplus
mailto:\{jiawei6, chunqiu2\}@illinois.edu

